$(\Rightarrow):$ Bu kısmın kanıtı için olmayana ergi yöntemini kullanalım. $\sup A=x$ olsun ve $$(\forall \epsilon >0)(\exists a_{\epsilon} \in A)(x- \epsilon < a_{\epsilon})$$ önermesinin YANLIŞ olduğunu yani $$(\exists \epsilon >0)(\forall a_{\epsilon} \in A)(a_{\epsilon} \leq x- \epsilon)$$ önermesinin DOĞRU olduğunu varsayalım.
$\left.\begin{array}{rr} (\exists \epsilon >0)(\forall a_{\epsilon} \in A)(a_{\epsilon}\leq x- \epsilon) \Rightarrow x-\epsilon\in A^{ü} \\ \\ x- \epsilon < x=\sup A \end{array}\right\} \Rightarrow \text{ Çelişki.}$
O halde varsayımımız yanlış yani $$(\forall \epsilon >0)(\exists a_{\epsilon} \in A)(x- \epsilon < a_{\epsilon})$$ önermesi doğrudur.
$(\Leftarrow):$ $\sup A=x$ ve $\epsilon>0$ olsun.
$\left.\begin{array}{rr} \epsilon>0\Rightarrow x-\epsilon<x=\sup A\Rightarrow x-\epsilon\notin A^{ü} \\ \\ \sup A=x\end{array}\right\} \Rightarrow (\exists a_{\epsilon}\in A)(x-\epsilon<a_{\epsilon}).$
Not: $A^{ü}:=\{x|x, A\text{'nın üst sınırı}\}=\{x|\forall a(a\in A\Rightarrow a\leq x)\}$