Herkese merhabalar .Şöyle bir soruya denk geldim.
Her n pozitif tam sayısı için d(n) ile n in pozitif bölenlerinin sayısını gösterelim. k verilmiş bir tek sayı olmak üzere ;
obeb(k,d(a1),d(a2),......d(a2019)=1 olmasını sağlayan bir (a1,a2,a3,a4...a2019) artan aritmetik pozitif tam sayı dizisi bulunduğunu gösteriniz.
Ben bu soru için şöyle bir düşünce geliştirdim.Şimdi k yı bir asal alalım 3,5,29 vs.. aN leri de aN=2n
olarak alırsak bu k asalı aN lerin hepsiyle olmasada büyük çoğunluğuyla(1 tanesi ile aralarında asal olsa dahi yeter)asal olduğundan obebleri 1 çıkar. Mesela asalımızı 3 alsak aN LER 2,4,6,8... gibi olucak ve 6n tarzındaki sayılar hariç 3 bunlarla aralarında asal olucak.
obeb(3,2,4,6,8,10,12,14............4038) ifadesi için hepsini birden ortak bölen bir sayı olmadığı için sonucu 1 çıkmalı.Yani aradığımız aritmetik dizisi a1= 2 ve ortak farkı r=2 olan bir aritmetik dizi bulunmuş oluyor.Bunu sadece 2n değil 4n,8n,16n,32n vs. diziler de sağlar.
Bu şekilde bir çözüm yaptım ama sorunun cevabını bulamadığımdan yaptıklarımdan emin olmadım.Çözümüm doğru mudur?Yanlışsa doğrusu nasıl bulunur?
Şimdiden teşekkür ederim.