Mantik herhangi bir şeye eşit çıkartmak değil, ne olduğunu bulmak. $1/1+x$ bir sembol. Bizim sorumuz ise şu: $1+x$ ile çarptığımızda $1$ bulacağımız bir polinom bulabilir miyiz?
Önce senin hatasnı söyleyeyim. $a_i$'ler için önerdiğin değerleri denemiyorsun. Denesen, bulacağın şey şu olacak: $1+0x+\cdots+0x^n=1$, ve $1$ ile $1+x$'i çarparsan, $1$ değil $x+1$ bulursun. Yani doğru cevap senin dediğin olamaz. Bir yanıt verince, bunu deneyip yanıtının doğru olup olmadığını bulabilirsin, ve deneyip bulmalısın da.
İkinci kısımda ipucu vereceğim $1+x$'in tersini nasıl bulacağına dair. Amacımız
$(1+x)f(x)=1$ eşitliğini sağlayan bir polinom bulup bulamayacağımıza karar vermek. O halde bir polinom prototipi yazıp, denklem kuralım, ve bu denklemi çözelim.
$f(x)=a_0+a_1x+\cdots+a_nx^n$ olsun prototipimiz. Sonuçta $n$'i ve $a_i$'leri dilediğim gibi seçip her polinomu yazabilirim. Tamamdır, o halde işimiz,
$(1+x)(a_0+a_1x+\cdots+a_nx^n)=1$
denklemini $n$ ve $a_i$'ler için çözmeliyiz. Ben biraz çözeceğim, gerisini sen getireceksin.
Çarpmaya başlayalım. Önce $1+x$ ile $a_0$ çarpalım. Ne elde ederiz? $a_0+a_0x$. Şimdi $1+x$ ile $a_1x$'i çarpalım. Bu sefer $a_1x+a_1x^2$ elde ederiz. O halde, çarpmamızın tamamını yazmadan, yukarıdaki denklemi şöyle yazabilirim değil mi?
$a_0+a_0x+a_1x+ \Big(a_1x^2+(1+x)(a_2x^2+\cdots+a_nx^n)\Big)=1$
Şimdi birkaç gözlem yapalım. Amacım, ufak terimlerin ne olduğunu bulmak. Geri kalanını sen bulacaksın. Farkındaysan, büyük parantez içinden gelecek terimlerin Çarpım olan kısmın çarpanlarından birisinde en ufak dereceli teremin derecesi $2$, demek ki çarpımda en az $x^2$ ama parantezin dışındaki üç terimin dereceleri en fazla $1$. Demek ki, parantez içindeki kısım $0$'a eşit olmalı, çünkü, karşı taraf $1$, yani ikinci dereceden hiçbir şey yok orada, o halde sağ taraftaki ikinci ve yüksek dereceden terimlerin ölmesi gerek. (DİKKAT: Büyük parantezin içinin sıfır olması gerektiğini biliyoruz ama bunu hangi $a_i$'ler ile elde edebileceğimizi bilmiyoruz.) Benzer nedenlerle büyük parantezin dışında kalan $a_0+a_0x+a_1x$ polinom $1$'e eşit olmalı. Yani $a_0+(a_0+a_1)x=1$ olmalı. Soldaki polinomun sabit katsayısı ile sağdakinin sabit katsayıları eşit olmalı, o halde $a_0=1$. Benzer biçimde, soldaki polinomda $x$'in katsayısı $a_0+a_1$, sağdakinde ise $0$, o halde $a_0+a_1=0$ olmalı, buradan da $a_1=-1$ olmalı sonucu çıkar.
$n$ kaç olmalı, $a_2$ kaç olmalı, $a_3$ kaç olmalı vs...
Benim kadar senin de çalışman gerekiyor bu soru için.