$x<y$ ve $0<z$ olsun. Amacımız $$xz<yz$$ olduğunu göstermek. Bunun için $``<"$ bağıntısının tanımı gereği $$xz\leq yz$$ ve $$xz\neq yz$$ olduğunu göstermeliyiz.
$$\left.\begin{array}{rr}x<y\Rightarrow (x\leq y)(x\neq y)\Rightarrow x\leq y \\ \\ 0<z\Rightarrow (0\leq z)(0\neq z)\Rightarrow 0\leq z \end{array}\right\} \Rightarrow xz\leq yz\ldots (1)$$
Şimdi
$$xz\neq xy$$ olduğunu göstermek için $$xz\neq xy$$ önermesinin doğru olmadığını yani $$xz=yz$$ olduğunu varsayalım.
$\left.\begin{array}{rr}xz=yz \\ \\ 0<z\Rightarrow (0\leq z)(0\neq z)\Rightarrow 0\neq z \Rightarrow (\exists t\in \mathbb{R}\setminus\{0\})(zt=tz=1)\\ \end{array}\right\} \Rightarrow (xz,t)=(yz,t)$
$\left.\begin{array}{rr}\Rightarrow \cdot(xz,t)=\cdot(yz,t)\Rightarrow (xz)t=(yz)t\Rightarrow x(zt)=y(zt)\Rightarrow x1=y1\Rightarrow x=y \\ \\ x<y\Rightarrow (x\leq y)(x\neq y)\Rightarrow x\neq y \end{array}\right\}\Rightarrow \text{Çelişki}$
O halde varsayımımız yanlış yani $$xz\leq yz\ldots (2)$$
$$(1),(2)\Rightarrow (xz\leq yz)(xz\neq yz)\Rightarrow xz<yz.$$