Tanım: $X\neq \emptyset \,\ \text{küme}, \,\ (Y,d)$ metrik uzay$,$ $ f_n \in\left (Y^X\right)^\mathbb{N} \,\ \text{ve} \,\ f \in Y^X$ olmak üzere
$$f_{n}\overset{d}{\longrightarrow }f:\Leftrightarrow (\forall \epsilon >0)(\exists N \in \mathbb{N})(\forall x\in X)(\forall n\geq N)(d(f_n(x),f(x))<\epsilon)$$$$f_{n}\overset{n}{\longrightarrow }f:\Leftrightarrow (\forall \epsilon >0)(\forall x\in X)(\exists N \in \mathbb{N})(\forall n\geq N)(d(f_n(x),f(x))<\epsilon)$$
Teorem: Düzgün yakınsak her fonksiyon dizisi noktasal yakınsaktır.
İspat:
$$f_{n}\overset{d}{\longrightarrow }f$$$$\Rightarrow$$$$ (\forall \epsilon >0)(\exists N \in \mathbb{N})(\forall x\in X)(\forall n\geq N)(d(f_n(x),f(x))<\epsilon)$$
$$\overset{?}\Rightarrow$$
$$ (\forall \epsilon >0)(\forall x\in X)(\exists N \in \mathbb{N})(\forall n\geq N)(d(f_n(x),f(x))<\epsilon)$$
$$\Rightarrow$$
$$f_{n}\overset{n}{\longrightarrow }f$$
Burada en can alıcı nokta "$?$" işaretinin olduğu yerdeki geçişin gerekçesi. Bunun için mantık bilmek gerekiyor. Gerektirme tanımını bilmek gerekiyor. Niceleyiciler yardımıyla elde edilen önermeler arasındaki ilişkileri bilmek gerekiyor. vs.