\begin{align*} f \colon \mathbb{R} \to \mathbb{R}\\ x \mapsto x^2 \end{align*}
fonksiyonunun konvex oldugunu gostermek istiyoruz. Yani
$\forall t \in [0,1], \forall a,b \in \mathbb{R} $
$((1-t)a+tb)^2 \leq (1-t)a^2 + tb^2$
$ (1-t)^2a^2+t^2b^2+2t(1-t)ab \leq (1-t)a^2 + tb^2 $
$t^2b^2+2t(1-t)ab + a^2 -2ta^2 + t^2a^2 \leq tb^2 + a^2 - ta^2 $
$(t^2-t)b^2 - 2(t^2-t)ab + (t^2-t)a^2 \leq 0$
$(t^2-t)(b-a)^2 \leq 0$
son ifadenin $t \in[0,1] $ dogru oldugunu gormek zor degil.