$R$ degismeli ve noetherian bir yerel halka olsun. $\mathfrak{m}$ de $R$'nin maksimal ideali olsun. $k = R / \mathfrak{m}$ diyelim.
$R$'nin
Krull boyutu (Krullboy($R$)), $R$'nin icerisinde bulabilecegin en uzun asal ideal zincirinin uzunlugu olarak tanimlaniyor.*
$R$'nin
gomme boyutu (gomboy($R$)), $\mathfrak{m}/\mathfrak{m}^2$ $k$-vektoruzayinin $k$-boyutu (vektor uzayi olarak boyutu) olarak tanimlaniyor.**
Elimizde her zaman Krullboy($R$)$\leq$gomboy($R$) esitsizligi var. Bu esitsizlikte esitlik oldugu zaman, $R$'ye
duzenli yerel halka diyoruz.
--
Duzenli olmayan yerel halka denince akla gelen ilk ornek $k$ bir cisim olmak uzere $k[x]/(x^2)$ halkasi saniyorum. Yalniz, ben bunun duzenli olmamasini yukaridaki tanima bakarak goremiyorum su an, yalan yok. O yuzden, isi uzatip benim anladigim esdeger bir tanim verecegim. (Ekleme: Yorumlarda ilk once bocalasam da, neden yukaridaki tanimin ise yaradigina dair birkac sey soyledim.)
--
$R$ bir halka olsun. $A$ da bir $R$-modul olsun.
$A$'nin
izdusumsel boyutu, izboy$(A)$, $$0 \to P_n \to \ldots \to P_1 \to P_0 \to A \to 0$$ seklinde en kucuk izdusumsel cozunum ***'un boyu. Mesela, yukaridaki cozunum minimal bir cozunum ise, izboy($A$) = $n$ diyoruz. Bu boyut elimizdeki modulun izdusumsel modul olmaktan ne kadar uzak oldugunu olcuyor.
$R$'nin
global boyutu, globoy($R$) ise soyle tanimlaniyor: $$\text{globoy}(R) = \sup \{ \text{izboy}(A) : A \text{ bir } R-\text{modul}\}$$
Simdi halkamizin en ustteki gibi oldugunu dusunelim. Degismeli, noetherian, yerel. O zaman
Teorem: $R$ duzenli yerel halkadir ancak ve ancak globoy($R$) sonlu ise.
Ben, genelde bu teorem dolayisiyla duzenli yerel halka diyince sonlu global boyutlu yerel halka dusunuyorum.
--
Simdi, $R = k[x]/(x^2)$ halkasinin global boyutunun sonsuz oldugunu gosterelim. Oncelikle, $k$ cismi dogal olarak bir $R$-modul ($k = R/(\overline{x})$). Ama, $k$'nin $R$-modul olarak izdusumsel boyutu sonsuz. $$\ldots \to k[x]/(x^2) \to k[x]/(x^2) \to k[x]/(x^2) \to k \to 0$$ cozunumu (oklar ile gosterilen fonksiyonlar $x$ ile carpma, yani $x$'i $0$'a, $1$'i $x$'e goturuyorlar.) $k$ icin minimal bir cozunum. Modul kategorimizde izdusumsel boyutu sonsuz olan bir modul buldugumuz icin, halkamizin global boyutu sonsuz. Teoremimiz de bu halkanin duzenli bir yerel halka olmadigini soyluyor.
--
*Eger elimizde $p_0 \subsetneq p_1 \subsetneq \ldots \subsetneq p_d$ seklinde asal idealler varsa, bu uzunlugu $d$ olan bir asal ideal zinciri var demek. $R$ noetherian oldugu icin, her zincir bir sure sonra duracak. Yani, her zincirin uzunlugu sonlu olacak. Ama bu Krull boyutunun sonlu olmasini gerektirmiyor. Ama halkamizi en bastaki gibi (yerel) secersek o zaman Krull boyutumuz her zaman sonlu.
**
http://matkafasi.com/11018/reguler-yerel-halka-ve-teget-uzayi***projective resolution. Ama tmdsozluk'te buna karsilik gelen bir sey bulamadim.