$\sec^2xdx=dv\Rightarrow v=\tan x$ ve $secx=u\Rightarrow du=\sec x \tan x dx$
I=$\int \sec^3xdx= \sec x\tan x-\int \tan^2x\sec x dx$
I=$\int \sec^3xdx= \sec x\tan x-\int \frac{\sin^2x}{\cos^3x}dx$
I=$\int \sec^3xdx= \sec x\tan x-\int \frac{1-\cos^2x}{\cos^3x}dx$
I=$\int \sec^3xdx= \sec x \ tanx-\int \frac{1}{\cos^3x}dx+\int \frac{1}{\cos x}dx$
I=$\int \sec^3xdx= \sec x \ tanx-\int \sec^3xdx+\int \frac{1}{\cos x}dx$
2I=$\int \sec^3xdx= \sec x\tan x+\int \sec xdx$
2I=$\int\sec^3xdx= \sec x\tan x+\ln|\sec x+\tan x|+c$
$I=\int \sec^3xdx= \frac 12\sec x\tan x+\frac 12\ln|\sec x+\tan x|+c$