Cok kolay aslinda. Tanimi (genel hali degil ama bu isini gorur) ve bir basit ornegi gostereyim $F(x)=\displaystyle\int_a^xf(t)dt\implies F'(x)=\dfrac{d}{dx}\left(\displaystyle\int_a^xf(t)dt\right)=f(x)$
Ornek 1: $F(x)=\displaystyle\int_0^x(2t+t^2)dt\implies F'(x)=\dfrac{d}{dx}\left(\displaystyle\int_0^x(2t+t^2)dt\right)=2x+x^2$
Ornek 2: $F(x)=\displaystyle\int_0^x(\ln t +\sec t)dt\implies F'(x)=\dfrac{d}{dx}\left(\displaystyle\int_0^x(\ln t +\sec t)dt\right)=\ln x +\sec x$
Yani senin sorun icin $f(t)$ de $t$ yerine $x$ koyacaksin bu kadar.