$\int_{-\infty}^{\infty}\dfrac{\sin\left(at\right)\sin\left(bt\right)}{t^2} = \pi.\min\{a,b\}$ olduğunu plancherel teoremi yardımıyla kanıtlayanız.
Plancherel Teoremi : $ L^1 \cap L^2 $ uzayı için tanımlı olan bir fourier dönüşümü $L^2(\mathbb{R})$ uzayına bir ve yalnız bir şekilde genişletilebilir ve $<\hat{f},\hat{g}>$ = $2\pi<f,g>$ ve $||\hat{f}||_2^2$ = $2\pi||f||_2^2$ eşitlikleri her $f,g\epsilon L^2$ iiçin sağlanır.
Bu kanıtı uzaktan eğitim olduğu için sadece notlara bakarak anlamayadım. Notlar dışında kaynakların hepsi ingilizce olduğu içinde araştırmamdan da bi sonuç alamadım. Bu ispat için yardımcı olabilir misiniz.