$\displaystyle\left(\sum _{n=0}^{\infty } \frac{(-1)^n x^{2 n}}{(2 n)!}\right) \left(\sum _{n=0}^{\infty } \frac{(-1)^n
(3 x)^{2 n}}{(2 n)!}\right) \left(\sum _{n=0}^{\infty } \frac{(-1)^n (6x)^{2 n}}{(2 n)!}\right)$ bir seri seri acilimi sayiliyor mu, yoksa tek bir toplam altinda mi yazmak lazim?
Bazi trig esitlikleri kullanarak su hale sokmak mumkun
$\displaystyle3 \left(\sum _{n=0}^{\infty } \frac{(-1)^n x^{2 n}}{(2 n)!}\right)^2-58 \left(\sum _{n=0}^{\infty }
\frac{(-1)^n x^{2 n}}{(2 n)!}\right)^4+216 \left(\sum _{n=0}^{\infty } \frac{(-1)^n x^{2 n}}{(2
n)!}\right)^6-288 \left(\sum _{n=0}^{\infty } \frac{(-1)^n x^{2 n}}{(2 n)!}\right)^8+128 \left(\sum
_{n=0}^{\infty } \frac{(-1)^n x^{2 n}}{(2 n)!}\right)^{10}$
Tek bir toplam altinda yazmak zor gibi duruyor.