Buna cevap verip, bir de ilgili soru sormak istiyorum.
Sorum su: Eger $|G|=120$ ise $G$'nin $[G:H] \leq 5$ sartini saglayan bir altgrubu ($H$) vardir.
(Ek olarak:$|G|=120$'den 2,3,5'ten biri olmak zorunda bu indeks ama 3 ya da 5'ten birinin kesinlikle olmasi gerek)
Simdi bunu bilgiyle beraber, $G$'nin basit oldugunu kabul edelim, o zaman $G$'yi $S_5$ icine gomebiliriz (teoremin ismini bilmiyorum). Ikisinin de mertebesi 120 oldugundan bunlar izomof. Bu da celiski getirir, cunku $S_5$ basit degil, $A_5$ onun normal alt grubu (indeksi 2 cunku.)