Ben bu yüzden bu $\forall, \exists$ gibi sembolleri hiç ama hiç sevmiyorum. Ben o tanımı kelimelerle yazacağım, $\epsilon$ harfi yerine de yarıçapın $y$'sini kullanacağım.
Burada başlamadan önce $(x-y, x+y)$ aralığına $x$ merkezli ve yarıçapı $y$ olan bir aralık diyeceğim. Mesela $(1,3)$ aralığı $2$ merkezli ve $1$ yarıçaplı bir aralık olacak. Anlaştık mı?
Senin yazdığın tanıma göre $x$'in $A$ kümesinin bir yığılma noktası olması demek her $y$ pozitif sayısı için $A\setminus \{x\} \cap (x-y, x+y)$ kesişiminin boştan farklı olması demek.
Yeniden yazalım. $x$ noktasının $A$ kümesinin bir yığılma noktası olması demek $x$ merkezli ve pozitif yarıçaplı her aralığın (aralık ne kadar büyük ya da küçük olursa olsun) $A\setminus\{x\}$ kümesi ile kesişiminin boştan farklı olması demek.
Yeniden yazalım :) $x$ noktasının $A$ kümesinin bir yığılma noktası olması demek merkezi $x$ olan herhangi bir aralık aldığımızda, o aralıkta $A$'nın $x$'ten farklı bir elemanı olması demek.
Yani ben sana hangi $y$'yi (ya da $\epsilon$ ya da $\theta$ ya da $k$, harf farketmez) sayısını verirsem vereyim, sen $x$ noktasının etrafında $y$ yarıçaplı aralığa bakacaksın. O aralıkta $A$'ya ait $x$'ten farklı bir eleman var mı diye kontrol edeceksin. Her seferinde cevap evet ise, $x$ yığılma noktası olacak. Eğer benim verdiğim bir $y$ için (mesela $y= 0.67$ için) böyle bir eleman bulamıyorsa o zaman $x$ noktası yığılma noktası olmayacak.
1)Dolayısıyla $\epsilon = 1$ seçmen yığılma noktası olmasını garanti etmiyor. Gösterdiğin şeyin her $\epsilon$ pozitif sayısı için gösterilmesi lazım. Epsilonu seçemezsin.
2) $x= 3$ verseydin de aynısını yapacaksın. Istersen yorum olarak yaz denemelerini bunun altına devam edelim konuşmaya.