Bildiğin gibi mesele, çarpımı, verilen polinomu veren iki polinom bulmak. Eğer verilen sistem $x^2-a^2$ gibi iki kare farkı şeklindeyse, o zaman, $(x-a)(x+a)$ şeklinde yazıyoruz. Eğer lineer terim yani $x$ in birinci derecede olduğu terim varsa, $$ax^2+bx+c$$ bunu $\alpha x+\beta$ ve $\gamma x+\delta$ şeklinde iki ifadenin çarpımı şeklinde yazılabiliyorsa,
$$ax^2+bx+c=(\alpha x+\beta)(\gamma x+\delta)=\alpha\gamma x^2+(\alpha\delta+\gamma\beta)x+\beta\delta$$ bu ifadenin iki tarafında aynı dereceli terimlerin katsayısı eşit olmalı:
$$a=\alpha\gamma$$
$$b=\alpha\delta+\gamma\beta$$
$$c=\beta\delta$$
İşin özü bu. Mesele, verilen $a,b,c$ katsayılarına uygun $\alpha, \beta, \gamma, \delta$ katsayılarını bulmak.