Haklısın paydaya 30 yazması anlamsız olmuş. Bu tip problemleri temel fiziksel fikirlerden yola çıkarak çözmek lazım. En azından bu şekilde anlatanlardan dinlemek lazım...
İsterseniz bir bakalım. Kemal'in hızı ve merdivenin hızı $v_k,v_m$ olsun. Merdivenin uzunluğu $L$, Kemal'in attığı toplam adım sayısı $D$ olsun. Kemal yukarı çıkarken $L/(v_k+v_m)$, aşağı inerken $L/(v_k-v_m)$ kadar zaman harcamıştır. Toplamda geçen süre:
$$T=\frac{L}{v_k+v_m}+\frac{L}{v_k-v_m}$$ kadardır. Diğer taraftan, Kemal'in toplamda $D$ adımı $v_k$ hızıyla aldığını biliyoruz. Yani, $D$ sayısı, Kemal'i baz alarak biliniyor. Kemal toplamda kaç adım attı: $D$. Peki bu kadar adımı atarken hızı neydi: saniyede $v_k$ adım. Dolayısıyla $D/v_k$ sayısı, $T$ ye eşit olmalı:
$$\frac{L}{v_k+v_m}+\frac{L}{v_k-v_m}=\frac{D}{v_k}$$ Bu ifadeyi şöyle anlayabilirsiniz: Eşitliğin sol tarafı yerdeki gözlemcinin gördüğünü sağdakiylse Kemal'in ölçümünü gösteriyor. Şimdi bunu düzenleyelim:
$$\frac{2v_k}{v_k^2-v_m^2}=\frac{D}{Lv_k}\Rightarrow \frac{v_k^2}{v_k^2-v_m^2}=\frac{D}{2L}\Rightarrow \frac{v_k^2-v_m^2}{v_k^2}=\frac{2L}{D}$$ ve buradan, $$1-\left(\frac{v_m}{v_k}\right)^2=\frac{2L}{D}\Rightarrow \frac{v_k}{v_m}=\left(1-\frac{2L}{D}\right)^{-1/2}$$ bulunur. Sayısal değerleri yerine koyarsanız,
$$\frac{v_k}{v_m}=\left(1-\frac{2L}{D}\right)^{-1/2}=\left(1-\frac{2\times 30}{80}\right)^{-1/2}=2$$ bulursunuz.