$\mathbf{T_1}$ ) $ (\emptyset\subseteq X)(f^{-1}[\emptyset]=\emptyset\in\tau_2)\Rightarrow\emptyset\in\tau_1$
$(X\subseteq X)(f^{-1}[X]=Y\in\tau_2)\Rightarrow X\in\tau_1.$
$\mathbf{T_2}$ ) $A,B\in\tau_1$ olsun. (Amacımız $A\cap B \in \tau_1$ olduğunu göstermek.)
$\left.\begin{array}{rr} A\in\tau_1\Rightarrow (\exists U\in\tau_2)(A=f^{-1}[U]) \\ \\ B\in\tau_1\Rightarrow (\exists V\in\tau_2)(B=f^{-1}[V])\end{array}\right\}\Rightarrow$
$\Rightarrow (U\cap V\in\tau_2)(A\cap B=f^{-1}[U]\cap f^{-1}[V]=f^{-1}[U\cap V])$
$\Rightarrow A\cap B\in\tau_1.$
$\mathbf{T_3}$ ) $\mathcal{A}\subseteq \tau_1$ olsun. (Amacımız $\cup\mathcal{A}\in\tau_1$ olduğunu göstermek.)
$\left.\begin{array}{rr}\mathcal{A}\subseteq \tau_1 \Rightarrow (\forall A\in\mathcal{A})(\exists B\in\tau_2)(A=f^{-1}[B]) \\ \\ \mathcal{B}:=\{B|(\forall A\in\mathcal{A})(\exists B\in\tau_2)(A=f^{-1}[B])\}\end{array}\right\}\Rightarrow$
$\Rightarrow (\mathcal{B}\subseteq\tau_2)(\cup_{A\in\mathcal{A}}A=\cup_{B\in\mathcal{B}}f^{-1}[B]=f^{-1}[\cup_{B\in\mathcal{B}}B]=f^{-1}[\cup\mathcal{B}]) $
$\Rightarrow (\cup\mathcal{B}\in \tau_2)(\cup \mathcal{A}=f^{-1}[\cup\mathcal{B}]) $
$\Rightarrow \cup \mathcal{A}\in\tau_1.$