$\mathbb{R}[X,Y]$ 'nin şu ideallerini ele alalım:
$<Y-X> \ , \ <Y^2+X^2-1> \ , \ <Y- \sqrt{1/2}>$
Gösteriniz ki ,
$<Y-X> \ + \ <Y^2+X^2-1> \ + \ <Y- \sqrt{1/2}>\ = \ <Y- \sqrt{1/2}\ , \ X-\sqrt{1/2}> \ ' $ dir.
Soruyu geometrik düşündüğümde,
$V(<Y-X> ) \cap V(<Y^2+X^2-1>) \cap V(<Y- \sqrt{1/2}>) = V(<Y-X> + <Y^2+X^2-1> + <Y- \sqrt{1/2}>)$
oluyor. dolayısı ile eşitliğin sol tarafındaki varyeteleri kesiştirdiğimde bulduğum şu oluyor:
$V(Y-X)=V(<Y-X>)=\{(x,y) \in \mathbb{R}^2 : y=x \}=\{"x=y \quad doğrusu."\} \subseteq \mathbb{A}^2_\mathbb{R}$;
$V(Y^2+X^2-1)=V(<Y^2+X^2-1>)=\{(x,y)\in \mathbb{R}^2: x^2+y^2=1 \}=\{"merkezi\ orjinde\ birim\ çember."\}\subseteq \mathbb{A}^2_\mathbb{R}$;
$V(Y-\sqrt{1/2})=V(<Y-\sqrt{1/2}>) = \{(x,y)\in\mathbb{R}^2: y=\sqrt{1/2}\}=\{" y=\sqrt{1/2}\ \ doğrusu."\}\subseteq \mathbb{A}^2_\mathbb{R}$;
olmak üzere bu üç varyete tabi ki $(\sqrt{1/2}\ , \ \sqrt{1/2})\in \mathbb{A}^2_\mathbb{R}$ 'de kesişiyorlar. Bu nokta ise $\{X-\sqrt{1/2}\ , \ Y- \sqrt{1/2} \}\subseteq \mathbb{R}[X,Y]$'nin varyetesi. Dolayısı ile bu iki polinom tarafından üretilen idealin varyetesi, demek ki
$<Y-X> \ + \ <Y^2+X^2-1> \ + \ <Y- \sqrt{1/2}>\ = \ <Y- \sqrt{1/2}\ , \ X-\sqrt{1/2}> \ $
oluyor çünkü varyeteleri eşitler diye düşünüyorum. Bunu (eğer doğruysa) göstermenin daha cebirsel bir yolu var mı ? Şimdiden her katkı için teşekkür ederim.