Icinde $(c,p)=1$ ve $k\geq1$ olacak sekilde bir $cp^k$ carpani barindiriyorsa bu bize $k$ adet $p$ carpani verir.
Toplamin icindeki ilk terim carpimda ne kadar $p$'nin kati oldugunu
Toplamin icindeki ikinci terim carpimda ne kadar $p^2$'nin kati oldugunu
$\vdots$
Toplamin icindeki $n$. terim carpimda ne kadar $p^n$'nin kati oldugunu veriyor.
$cp^k$ hem $p$, hem $p^2$, $\cdots$, hem $p^k$'nin kati oldugundan. Bu elemani tam olarak $k$
kere saymis oluyoruz. Kisacasi sol taraf sag toplama esit.
Bu toplam sonlu Cunku $p^k>a$ ise $\lfloor a/p^k \rfloor=0$ olur.