$f\neq 0$ olduğunu varsayalım.
$\left.\begin{array}{rr} (f\neq 0)(f\geq 0)\Rightarrow (\exists x_0\in [a,b])(f(x_0)>0) \\ \\ f, \text{ sürekli}\end{array}\right\}\Rightarrow$
$\Rightarrow (\exists \epsilon>0)(\forall x\in (x_0-\epsilon, x_0+\epsilon)\cap [a,b])(f(x)>0)$
I. Durum: $a<x_0-\epsilon<x_0+\epsilon<b$ olsun.
$\left.\begin{array}{rr} \Rightarrow 0<\int_{x_0-\epsilon}^{x_0+\epsilon}f(x)dx\leq \int_{a}^{b}f(x)dx \\ \\ \int_{a}^{b}f(x)dx=0\end{array}\right\}\Rightarrow 0<0 \text{ (Çelişki)}$
II. Durum: $x_0-\epsilon<a<x_0+\epsilon<b$ olsun.
$\left.\begin{array}{rr} \Rightarrow 0<\int_{a}^{x_0+\epsilon}f(x)dx\leq \int_{a}^{b}f(x)dx \\ \\ \int_{a}^{b}f(x)dx=0\end{array}\right\}\Rightarrow 0<0 \text{ (Çelişki)}$
III. Durum: $a<x_0-\epsilon<b<x_0+\epsilon$ olsun.
$\left.\begin{array}{rr} \Rightarrow 0<\int_{x_0-\epsilon}^{b}f(x)dx\leq \int_{a}^{b}f(x)dx \\ \\ \int_{a}^{b}f(x)dx=0\end{array}\right\}\Rightarrow 0<0 \text{ (Çelişki)}$
IV. Durum: $x_0-\epsilon<a<b<x_0+\epsilon$ olsun.
$\left.\begin{array}{rr} \Rightarrow 0<\int_{a}^{b}f(x)dx \\ \\ \int_{a}^{b}f(x)dx=0\end{array}\right\}\Rightarrow 0<0 \text{ (Çelişki)}$