Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
Toggle navigation
E-posta veye kullanıcı adı
Şifre
Hatırla
Giriş
Kayıt
|
Şifremi unuttum ne yapabilirim ?
Anasayfa
Sorular
Cevaplanmamış
Kategoriler
Bir Soru Sor
Hakkımızda
Sayısal denk olduğunu kanıtlayınız.
0
beğenilme
0
beğenilmeme
487
kez görüntülendi
$a,b,c,d \in \mathbb{R}, \ a < b $ ve $c < d$ olmak üzere $$[a,b)\sim (c,d]$$ olduğunu kanıtlayınız.
soyut-matematik
denk-kümeler
eşgüçlü-kümeler
4 Aralık 2020
Lisans Matematik
kategorisinde
pinarsasmaz48
(
56
puan)
tarafından
soruldu
25 Mayıs 2021
pinarsasmaz48
tarafından
düzenlendi
|
487
kez görüntülendi
cevap
yorum
$(a,d)$ noktasında $(b,c)$ noktasına giden doğruyu düşün.
Burada bir sorun var. Ya $a=b,\ c<d$ ise?
EK: Ya da $a<b,\ c=d$ ise?
Evet hocam. Sorunun güncellenmesi gerekiyor.
Şimdi ilk yorumdaki ipucu yardımı ile sonuca ulaşabilirsin artık.
Lütfen yorum eklemek için
giriş yapınız
veya
kayıt olunuz
.
Bu soruya cevap vermek için lütfen
giriş yapınız
veya
kayıt olunuz
.
0
Cevaplar
İlgili sorular
$A$ ve $B$ sayılabilir iki küme ise $A\cup B$ kümesinin de sayılabilir olduğunu gösteriniz.
$a,b\in\mathbb{R}$ ve $a<b$ olmak üzere $$[a,b]\sim (a,b)$$ olduğunu gösteriniz.
iyi sıralı bir kümeden kendi üzerine tanımlanabilecek tek sırasal eşyapı dönüşümünün özdeşlik dönüşümü olduğunu kanıtlayınız.
Gauss tam sayılar kümesinin sayılabilir sonsuz olduğunu kanıtlayınız.
Tüm kategoriler
Akademik Matematik
742
Akademik Fizik
52
Teorik Bilgisayar Bilimi
31
Lisans Matematik
5.5k
Lisans Teorik Fizik
112
Veri Bilimi
144
Orta Öğretim Matematik
12.7k
Serbest
1k
20,274
soru
21,803
cevap
73,475
yorum
2,427,857
kullanıcı