$\mathcal{X}$ sonlu bir kume olsun, kardinalitesine $c$ diyelim, $\tau$ da bu kume uzerine bir topoloji olsun. Toplam topolojisi $\bigsqcup_{i=0}^n \mathcal{X}$ ne zaman carpim topolojisine $\prod_{i=0}^m \mathcal{X}$ denk duser? yada hic denk duserler mi? (hangi $n$,$m$ ve $\tau$ icin )
Mesela $\mathcal{X} = \{0,1,2\}$ olsun. Uzerinde ayrik topolojiyi yada trivial topolojiyi alalim Sanirim $\mathcal{X}\oplus \mathcal{X}\oplus \mathcal{X}$ ile $\mathcal{X}\times \mathcal{X}$ uzerindeki topolojiler ayni olacak.Emin olamiyorum ama son dedigimden o kadar.