Sorum şu:
$f:\mathbb{R} \rightarrow \mathbb{R}$ olsun. $f$ fonksiyonun kuralına şimdilik $f(x)=\cos (x)$ diyelim ve bir eşitsizlik bulmaya çalışalım.
$f(x)$ integrallenebilir bir fonksiyon. O halde şu eşitliği yazabiliriz:
$\cos(x) = \int_{0}^{x} \sin (x) \,dx \leq \int_{0}^{x} |\sin (x)| \,dx \leq \int_{0}^{x} x \,dx=\dfrac{x^2}{2}$ ve buradan da $\cos (x) < \dfrac{x^2}{2}$ çıkar ama sorun şu ki doğruluğundan pek emin değilim. Belki mutlak değer içindeyken doğru olabilir, onu şu an nasıl gösteririm bilmiyorum. Ayrıca $|\sin(x)|\leq1$ de alabilirdik, o zaman da $\cos(x)\leq x$ çıkardı. Fakat muhtemelen bu da mutlak değer içinde doğrudur. Hocalarım cosinüs için bu tarz bir eşitsizlik mevcut mu ya da bu eşitsizlikler doğru mu ya da doğru yapılabilir mi?