Merak ettiğim soru şu, öncelikle biliyoruz ki $R(A^T)=C(A)$'dır. Örneğin, $A=\begin{pmatrix} 1 & 1 & 2\\ 0 & 1 & 1\\ 1 &3 &4 \end{pmatrix}$ olsun. Bunun önce Sütun Uzayını daha sonra transpozesinin satır uzayını bulalım -ikisi aynı şey olmalı teorem böyle söylüyor-. O halde biliyoruz ki Reduced Row Echelon Form'unu bulmak bizi rahatlatacaktır, çünkü yine başka bir teoremden $A$ ve onun r.r.e.f'i $U$ aynı satır ve sütun uzayına sahiptir.
Kısaca:
\[A=\begin{pmatrix} 1 & 1 & 2\\ 0 & 1 & 1\\ 1 &3 &4 \end{pmatrix}\equiv\begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & 1\\ 0 &0 &0 \end{pmatrix}\] olur. Buna göre $C(A)=\{(1, 0, 0)^T,(0, 1, 0)^T\}$ olmalıdır. Öte yandan $A^T$'ye bakarsak da şunu görürüz:
\[A^T=\begin{pmatrix} 1 & 0 & 1\\ 1 & 1 & 3\\ 2 &1 &4 \end{pmatrix}\equiv\begin{pmatrix} 1 & 0 & 1\\ 0 & 1 & 2\\ 0 &0 &0 \end{pmatrix}\]
Biliyoruz ki $R(A^T)=C(A)$'dır.
Buna göre, $C(A)=\{(1, 0, 1)^T, (0, 1, 2)^T\}$ olmalıdır. Ama görüyoruz ki üstteki $C(A)$ ile şimdi bulduğumuz eşit değil, neden bununla karşılaşıyorum anlayamadım.