@Arda Kılıç, Bu çözümde bazı ciddi hatalar var. Çözümlerine daha fazla özen göstermelisin.
1. $a<0<b$ için bu sonuç doğru değil. Çünki $f(x)=\frac1{x^2}$ böyle bir aralıkta (sınırsız olduğu için) Riemann anlamında integrallenmez.
2. $\int_a^b f(x)\,dx=\lim\limits_{n\to\infty}\frac{b-a}n\sum_{k=1}^\infty f\left(a+\frac{k(b-a)}n\right)$ her fonksiyonda doğru değildir. Sadece integrallenebilen fonksiyonlar için geçerlidir (Bunu daha önce de, başka bir problem için de yazmıştım, aşağıdaki örneğe bakınız).
Bu nedenle, öncelikle, bu fonksiyonun bu aralıkta integrallenebildiğini göstermek gerekir, bu kısım eksik kalmış. Bunu, bir teroem ile göstermek mümkün ama sorunun amacı eşitliği hiç bir teorem kullanmadan göstermek idi. Bu da yapılabilir ama biraz daha işlem gerekiyor. EK: $\lim\limits_{\left\| P\right\|\to0}f(x_i^*)\Delta x_i$ semboliktir, tam olarak bir dizinin limiti değildir.
Örnek: $f(x)=\begin{cases}0, & x\in\mathbb{Q}\\ 1, & x\notin\mathbb{Q}\end{cases}$
Herhangi $a,b\in\mathbb{Q},\ a<b$ için $\lim\limits_{n\to\infty}\frac{b-a}n\sum_{k=1}^\infty f\left(a+\frac{k(b-a)}n\right)=0$ olduğu kolayca görülür. Ama, lisans derslerinde $f(x)$ in hiç bir aralıkta integrallenemediği kolayca gösterilir. Dolayısıyla bu durumda, problemin çözümünde kullanılan formül, her zaman doğru değildir.