ClearAll["Global`*"]
Ε =
D[f[u, v], {u, 2}]^2 (1 + u^2) +
2 u v D[f[u, v], u, v] D[f[u, v], {u, 2}] +
D[f[u, v], u, v]^2 (1 + v^2);
G = D[f[u, v], {v, 2}]^2 (1 + v^2) +
2 u v D[f[u, v], u, v] D[f[u, v], {v, 2}] +
D[f[u, v], u, v]^2 (1 + u^2);
F = D[f[u, v], u,
v] (D[f[u, v], {u, 2}] (1 + u^2) + D[f[u, v], {v, 2}] (1 + v^2)) +
u v (D[f[u, v], {u, 2}] D[f[u, v], {v, 2}] + D[f[u, v], u, v]^2);
L = D[f[u, v], {u, 2}]/Sqrt[u^2 + v^2 + 1];
Ν = D[f[u, v], {v, 2}]/Sqrt[u^2 + v^2 + 1];
M = D[f[u, v], u, v]/Sqrt[u^2 + v^2 + 1];
Κ = (L Ν - M^2)/(Ε G - F^2) //Simplify // FullSimplify
H = (Ε Ν - 2 F M + G L)/( 2 (Ε G - F^2)) // Simplify // FullSimplify
$K=\dfrac{1}{\left(u^2+v^2+1\right)^2 \left(f^{(0,2)}(u,v) f^{(2,0)}(u,v)-f^{(1,1)}(u,v)^2\right)}$
$H=\dfrac{-\left(u^2+1\right) f^{(2,0)}(u,v)-\left(v^2+1\right) f^{(0,2)}(u,v)-2 u v f^{(1,1)}(u,v)}{2
\left(u^2+v^2+1\right)^{3/2} \left(f^{(1,1)}(u,v)^2-f^{(0,2)}(u,v) f^{(2,0)}(u,v)\right)}$
Veya daha anlasilir haliyle
ClearAll["Global`*"]
Ε = (\!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\))^2 (1 + u^2) +
2 u v \!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\) \!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\) + (\!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\))^2 (1 + v^2);
G = (\!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\))^2 (1 + v^2) +
2 u v \!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\) \!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\) + (\!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\))^2 (1 + u^2);
F = \!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\) (\!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\) (1 + u^2) + \!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\) (1 + v^2)) +
u v (\!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\) \!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\) + (\!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\))^2);
L = \!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\)/Sqrt[
u^2 + v^2 + 1];
Ν = \!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\)/Sqrt[
u^2 + v^2 + 1];
M = \!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\)/Sqrt[
u^2 + v^2 + 1];
Κ = (L Ν - M^2)/(Ε G - F^2) //
Simplify // FullSimplify
H = (Ε Ν - 2 F M + G L)/(
2 (Ε G - F^2)) // Simplify // FullSimplify
___________________________________________________
Yeni katsilar icin K ve H:
$K=\dfrac{1}{\left(u^2+v^2-1\right)^2 \left(f^{(1,1)}(u,v)^2-f^{(0,2)}(u,v) f^{(2,0)}(u,v)\right)}$
$H=\dfrac{-\left(u^2-1\right) f^{(2,0)}(u,v)-\left(v^2-1\right) f^{(0,2)}(u,v)-2 u v f^{(1,1)}(u,v)}{2
\left(u^2+v^2-1\right)^{3/2} \left(f^{(1,1)}(u,v)^2-f^{(0,2)}(u,v) f^{(2,0)}(u,v)\right)}$
Veya sizin gosterimle soyle olur sanirsam.(Kontrol edilse iyi olur..)
$K=-\dfrac{1}{\left(u^2+v^2-1\right)^2 \left(f_{uu} f_{vv}-f^2_{uv}\right)}$
$H=-\dfrac{\left(1-u^2\right) f_{uu}+\left(1-v^2\right) f_{vv}-2 u v f_{uv}}{2
\left(u^2+v^2-1\right)^{3/2} \left(f_{uu} f_{vv}-f^2_{uv}\right)}$
ClearAll["Global`*"]
Ε = (\!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\))^2 (1 - u^2) -
2 u v \!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\) \!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\) + (\!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\))^2 (1 - v^2);
G = (\!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\))^2 (1 - v^2) -
2 u v \!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\) \!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\) + (\!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\))^2 (1 - u^2);
F = \!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\) (\!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\) (1 - u^2) + \!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\) (1 - v^2)) -
u v (\!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\) \!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\) + (\!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\))^2);
L = \!\(
\*SubscriptBox[\(∂\), \(u, u\)]\(f[u, v]\)\)/Sqrt[u^2 + v^2 - 1];
Ν = \!\(
\*SubscriptBox[\(∂\), \(v, v\)]\(f[u, v]\)\)/Sqrt[u^2 + v^2 - 1];
M = \!\(
\*SubscriptBox[\(∂\), \(u, v\)]\(f[u, v]\)\)/Sqrt[u^2 + v^2 - 1];
Κ = (L Ν - M^2)/(Ε G - F^2) //Simplify
H = (Ε Ν - 2 F M + G L)/(2 (Ε G - F^2)) // Simplify
________________________________________________________
$S=\left(
\begin{array}{cc}
\frac{-\left(v^2+1\right) f^{(0,2)}(u,v)-u v f^{(1,1)}(u,v)}{\left(u^2+v^2+1\right)^{3/2}
\left(f^{(1,1)}(u,v)^2-f^{(0,2)}(u,v) f^{(2,0)}(u,v)\right)} & \frac{\left(u^2+1\right) f^{(1,1)}(u,v)+u v
f^{(0,2)}(u,v)}{\left(u^2+v^2+1\right)^{3/2} \left(f^{(1,1)}(u,v)^2-f^{(0,2)}(u,v) f^{(2,0)}(u,v)\right)}
\\
\frac{\left(v^2+1\right) f^{(1,1)}(u,v)+u v f^{(2,0)}(u,v)}{\left(u^2+v^2+1\right)^{3/2}
\left(f^{(1,1)}(u,v)^2-f^{(0,2)}(u,v) f^{(2,0)}(u,v)\right)} & \frac{-\left(u^2+1\right) f^{(2,0)}(u,v)-u v
f^{(1,1)}(u,v)}{\left(u^2+v^2+1\right)^{3/2} \left(f^{(1,1)}(u,v)^2-f^{(0,2)}(u,v) f^{(2,0)}(u,v)\right)}
\\
\end{array}
\right)$