L'hospital uygulamadan önceki son ifadeden devam ediyorum,
$\ln{L}=\lim\limits_{x \to \infty} \dfrac{\ln{\left(29^x+31^x\right )}}{x}=\lim\limits_{x \to \infty} \dfrac{\ln{\left(\dfrac{29^x}{31^x}+1\right )}+\ln\left(31^x\right)}{x}=\lim\limits_{x \to \infty} \dfrac{\ln{\left(\dfrac{29^x}{31^x}+1\right )}+x\ln\left(31\right)}{x}=\ln\left(31\right)+\lim\limits_{x \to \infty} \dfrac{\ln{\left(\dfrac{29^x}{31^x}+1\right )}}{x}$ olur. $\dfrac{29}{31}<1$ olduğundan logaritmanın içerisi $\ln{1}=0$'a yakınsar ve kalan limit $0$ olur. $\ln{L}=\ln{31}$ olduğundan $L=31$ olur.