Gerçel değişkenli ve gerçel değerli fonksiyonların kuralı verildiğinde çoğu zaman tanım kümesi açıkça belirtilmez. Bu durumda fonksiyonun tanım kümesi, fonksiyonun kuralında $x$ değişkeni yerine gelebilecek tüm gerçel sayıların oluşturduğu küme olarak alınır. Bu soruda da fonksiyonun tanım kümesi açıkça belirtilmemiş. Dolayısıyla kuralını yazdığınız fonksiyonun tanım kümesi olarak $$\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi |k\in\mathbb{Z}\right\}$$ kümesi alınır ve $$f(x):=\tan x$$ kuralı ile verilen $$f:\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi |k\in\mathbb{Z}\right\}\to\mathbb{R}$$ fonksiyonu da artan DEĞİLDİR.
Fakat şunu da eklemek de fayda var. $$g(x):=\tan x$$ kuralı ile verilen $$g:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R}$$ fonksiyonu artandır. Yani fonksiyonun kuralı kadar tanımlı olduğu aralık da önem arz ediyor. Sen burayı kaçırmışsın @sametoytun.
$x\in(0,\infty)$ göz önüne alındığında x'ler büyüdükçe y değerleri azalmıyor mu?
$(-\infty, 0)$ ve $(0,\infty)$ aralıklarında dediğin gibi ama $\mathbb{R}\setminus\{0\}$ kümesinde fonksiyon azalan değil. Mesela $-1<1$ fakat $f(1)=1\leq -1=f(-1)$ olmadığından $f$ fonksiyonu $\mathbb{R}\setminus\{0\}$ kümesi üzerinde azalan DEĞİLDİR.
@sametoytun, $\mathbb{R}\setminus\{0\}$ kümesi bir ARALIK DEĞİL. Buna dikkat et. Buraya bir göz at istersen.