$\mathbb{Q} \not \cong \mathbb{Z} $
Aşağıda yazdığım gibi bir ispat verilmiş. Size kaçırdığım bir kısmı sormak istiyorum.
$\mathbb{Q} \to \mathbb{Z} $ olacak şekilde bir $f$ fonksiyonu olduğunu varsayalım.
$r\in \mathbb{Q}$ öyle ki $f(r)=1_\mathbb{Z}=1 $ vardır. Şimdi şunu göz önüne alalım $f(2\dfrac{r}{2})=^*2f(\dfrac{r}{2})=1 \to \dfrac{r}{2}=\dfrac{1}{2}$ Çelişki.
Anlamadığım kısım yıldızla gösterdim. Eğer f bir isomorfluğu temsil ediyosa birebir-örten ve homomorf olmalı. Burada $2$yi nasıl dışarı çıkarabildi.Bu $2$yi dışara çıkarabilme hakkımız nereden geliyor?
Bence ispat şu şekilde olmalıydı, $f(2\dfrac{r}{2})=f(2)f(\dfrac{r}{2})=1 $ ($f(2)=c, c\in \mathbb{Z} \to c.f(\dfrac{r}{2})=1$ ise $f(\dfrac{r}{2})=\dfrac{1}{c} \notin \mathbb{Z} $ Çelişki