Çok yerinde bir soru. Doğrusu $i^2=-1$, çünkü $i$'yi cebirsel olarak $x^2=-1$ denkleminin bir kökü olarak tanımlarız. Bu denklemin iki kökü olabilir, bunları $\sqrt-1$ ve $-\sqrt-1$ ile gösterelim. Yalnız dikkat etmeliyiz, $\sqrt-1$ bir reel sayı değil, yani sayı doğrusu üzerinde değil. O yüzden bunun sıfırın sağında ya da solunda olmasından, yani pozitif ya da negatif olması gibi bir şeyden bahsedemiyoruz. Yani teorik olarak $i=\sqrt-1$ de olabilir, $i=-\sqrt-1$ de, biz seçebiliriz. Neyse ki hangisini seçtiğimiz, karmaşık(bileşik) sayılar teorisi için hiç bir şey değiştirmiyor. Çünkü $i$'nin tek ilgilendiğimiz özelliği, karesinin $-1$ olması. Ve iki tercihimiz de bu özelliği sağlıyor.