$ABC$ üçgeninin kenar uzunlukları sırasıyla $a,b,c$ ve $AD=p$, $AF=k$, $BD=r$, $BE=m$, $CE=n$, $CF=t$ olsun. $ADF$, $BDE$, $CEF$ üçgenlerine sinüslü alan formülünü uygulayarak $$\frac{Alan(DEF)}{Alan(ABC)}=\frac{pmt+rns}{abc}$$ olduğu gösterilebilir. $AE$,$CD$ ve $BF$ açıortaylarına göre açıortay teoremi uygulanırsa $$p=\frac{bc}{a+b},m=\frac{ac}{b+c},t=\frac{ba}{a+c},r=\frac{ac}{a+b},n=\frac{ba}{c+b},s=\frac{bc}{a+c}$$ eşitlikleri bulunur. Bu değerler yukarıdaki eşitlikte yerine yazılırsa $$\frac{A(DEF)} {A(ABC)}=\dfrac{2abc}{(a+b)(b+c)(a+c)}$$ bulunur.