Doğrusal indirgemeli dizi verildiğinden bu dizinin genel terimi $a_n = A(x_1)^n + B(x_2)^n + C(x_3)^n$ formundadır. Buradaki $A, B, C$ değerleri $a_1, a_2, a_3$ başlangıç değerleri yardımıyla hesaplanabilir. Öte taraftan, $8x^3 - 6x - 1=0$ karakteristik denkleminin kökleri olan $x_1, x_2, x_3$ değerlerinin tamamının irrasyonel olduğunu görmek zor değildir. Önce rasyonel kök teoreminden faydalanıp hiç rasyonel kökü olmadığını gösteririz. Sonra, Bolzano (ara değer) teoreminden $(-1,-\frac{1}{2}), (-\frac{1}{2}, 0), (0,1)$ aralıklarında gerçel kökler olduğunu gösteririz. (Soruda rasyonellikten bahsedildiği için bu irrasyonel olduğunu gösterme aşamalarını yapma gereği duydum ama çözümü bitirince pek ihtiyaç kalmadığını gördüm.) $x_3 \approx 0,9 $, $x_2 \approx -0,1 $ ve $x_1 \approx - 0,7 $ yaklaşık hesaplamalarını yapmakta fayda var. Bunlar nümerik yollarla hesaplanabilir ama ben wolfram'a yaptırdım. Kağıt kalemle hesaplamak da zor değildir. $1>x_3 > |x_1| > |x_2| >0$ dır. Şimdi
$$ \lim_{k \to \infty} \dfrac{a_{k+1}}{a_k} = \lim_{k \to \infty} \dfrac{A(x_1)^{k+1} + B(x_2)^{k+1} + C(x_3)^{k+1}}{A(x_1)^k + B(x_2)^k + C(x_3)^k} $$
olup bu limitte belirleyici terimler $C(x_3)^{k+1}$ ve $C(x_3)^{k}$ olduğundan
$$ \lim_{k \to \infty} \dfrac{a_{k+1}}{a_k} = \lim_{k \to \infty} \dfrac{C(x_3)^{k+1} }{ C(x_3)^{k}} = x_3$$
olur. Bu $\lim_{k \to \infty} \dfrac{a_{k+1}}{a_k} = x_3$ sonucu başlangıç değerleri olan $a_1, a_2, a_3$'ten bağımsızdır. Ayrıca $x_2 \neq x_3$ olduğundan $\lim_{k \to \infty} \dfrac{a_{k+1}}{a_k} = x_2$ olması mümkün değildir. Eğer $A=C=0$ ise bu durumda da genel terim $a_n = B(x_2)^n$ olacaktır. $x_2$ irrasyonel olduğundan $a_1, a_2, a_3$'ün rasyonel olması mümkün değildir. Çünkü $a_1=Bx_2$ ve $a_2=B(x_2)^2$ oranlanırsa $\dfrac{a_2}{a_1}=x_2$ nin rasyonel olduğu çelişkisi çıkar. (Soruda hata olduğunu düşünüyorum. Ya da ben çok kötü bir hata yapıyorumdur ama göremedim.)