$f$, pozitif gerçel sayılar kümesinde tanımlı (ve pozitif değerli), türevlenebilir ve artan bir fonksiyon olsun. $$\lim_{x\to \infty}f(x) = L$$ pozitif bir gerçel sayı iken $$\sum_{n=1}^{\infty}(L-f(n))$$ sonsuz toplamı yakınsak mıdır?
Örneğin, $x>0$ değerlerinde tanımlanan $f(x)=\arctan(x^2)$ fonksiyonu için bunun doğru olduğu gösterilmişti.