Tüm çözümlerde kullanacağımız genel gösterimleri tanımlayalım: $|BC|=a, |CA|=b, |AB|=c$ ve $\angle BAC = \alpha$, $\angle ABC = \beta$, $\angle ACB = \gamma$ olsun. $ABC$ üçgeninin $[BC], [CA], [AB]$ kenarlarına (gerekirse uzantılarına) inen dikmelerinin uzunluklarını $|OP|=x, |OQ|=y, |OR|=z$ ile gösterelim. $|OA|=R_1, |OB|=R_2, |OC|=R_3$ olsun.
Çözüm 1 [L. J. Mordell, 1937]:
$AQOR$ bir kirişler dörtgeni olduğundan, $\angle QOR = \beta + \gamma$. $OQR$ üçgeninde kosinüs teoreminden, $$ QR = \left(y^2 + z^2 - 2yz\cos(\beta + \gamma)\right)^{\frac{1}{2}} .$$
$ARQ$ üçgeninde sinüs teoreminden, $$ \dfrac{QR}{\sin \alpha} = R_1 .$$
Böylece,
\begin{align*}
R_1 & = \left(y^2 + z^2 - 2yz\cos(\beta + \gamma)\right)^{\frac{1}{2}} / \sin \alpha \\
& = \left(y^2 + z^2 - 2yz(\cos\beta \cos\gamma - \sin \beta \sin \gamma)\right)^{\frac{1}{2}} / \sin \alpha \\
& = \left(y^2(\cos^2 \gamma + \sin^2\gamma) + z^2(\cos^2 \beta + \sin^2\beta)\right)^{\frac{1}{2}} / \sin \alpha \\
& = \left( \left( y\cos\gamma - z \cos\beta \right)^2 + \left( y\sin\gamma + z \sin\beta \right)^2\right)^{\frac{1}{2}} / \sin \alpha \\
& \geq \left( y\sin\gamma + z \sin\beta \right) / \sin \alpha .
\end{align*}
Buradan $$R_1 \geq y\dfrac{\sin\gamma}{\sin\alpha} + z\dfrac{\sin\beta}{\sin\alpha} .$$
elde ederiz. Benzer şekilde,
\begin{align*}
R_2 & \geq z\dfrac{\sin\alpha}{\sin\beta} + x\dfrac{\sin\gamma}{\sin\beta} \\
R_3 & \geq x\dfrac{\sin\beta}{\sin\gamma} + y\dfrac{\sin\alpha}{\sin\gamma} .
\end{align*}
yazabiliriz. Bu eşitsizlikleri taraf tarafa toplarsak,
$$ R_1 + R_2 + R_3 \geq x\left( \dfrac{\sin\beta}{\sin\gamma} + \dfrac{\sin\gamma}{\sin\beta} \right) + y\left( \dfrac{\sin\alpha}{\sin\gamma} + \dfrac{\sin\gamma}{\sin\alpha} \right) + z\left( \dfrac{\sin\beta}{\sin\alpha} + \dfrac{\sin\alpha}{\sin\beta} \right) .$$
$a,b$ pozitif sayıları için aritmetik-geometrik ortalama eşitsizliğinden $\dfrac{a}{b} + \dfrac{b}{a} \geq 2$ olur. Sonuç olarak
$$ R_1 + R_2 + R_3 \geq 2(x + y + z)$$
eşitsizliğine ulaşırız.
Eşitlik koşulunu belirleyelim. Aritmetik-geometrik ortalama eşitsizliğinde, $\sin\alpha = \sin\beta = \sin\gamma$ olmalıdır ve $\alpha = \beta = \gamma = 60^\circ$ bulunur. Yani $ABC$ bir eşkenar üçgendir. Ayrıca, $\left( y\cos\gamma - z \cos\beta \right)^2 = 0$ koşulundan $y=z$ elde edilir. Benzer eşitlik koşullarından $z=x$ olup $x=y=z$ bulunur. $O$ noktası $ABC$ eşkenar üçgeninin merkezi iken eşitlik sağlanır.
Dipnot: Bu, Erdös'ün sunduğu eşitsizliğe verilen ilk ispattır ve 1937'de Louis Joel Mordell tarafından AMM'de yayımlanmıştır. Gördüğünüz gibi, ispatı tamamen temel yöntemler içeriyor. Mordell'in ispatının güçlü etkileri daha sonra verilen ispatlarda da görülebilir.