$X \neq \emptyset$ küme ve $\mathcal{A} \subseteq 2^X$ ailesi sonlu kesişim özelliğine sahip olmak üzere
$$\mathcal{F}_{\mathcal{A}}:=\left\{F| F \supseteq G \in \mathcal{M}= \left\{\bigcap \mathcal{A}^* \big{|} (\mathcal{A}^* \subseteq \mathcal{A})(|\mathcal{A}^*|< \aleph_0)\right\}\right\}$$ ailesinin $X$'de bir filtre olduğunu gösteriniz. Bu filtreye $\mathcal{A}$ ailesinin doğurduğu (ürettiği) filtre denir.
Tanım: $X \neq \emptyset$ küme ve $\mathcal{A} \subseteq 2^X$ olsun. Eğer $\mathcal{A}$ ailesinin sonlu her altailesinin kesişimi boştan farklı ise o zaman $\mathcal{A}$ ailesine sonlu kesişim özelliğine sahip (s.k.ö.) aksi halde sonlu kesişim özelliğine sahip değil denir.
Biçimsel olarak
$$(X \neq \emptyset)(\mathcal{A} \subseteq 2^X)$$ $$:\Rightarrow$$ $$\mathcal{A}, \text{ sonlu kesişim özelliğine sahip} :\Leftrightarrow (\forall \mathcal{A}^*\subseteq \mathcal{A})\left(|\mathcal{A}^*| < \aleph_0 \Rightarrow \bigcap \mathcal{A}^* \neq \emptyset\right)$$ $$\mathcal{A}, \text{ sonlu kesişim özelliğine sahip değil} :\Leftrightarrow (\exists \mathcal{A}^*\subseteq \mathcal{A})\left(|\mathcal{A}^*| < \aleph_0 \wedge \bigcap \mathcal{A}^* = \emptyset\right)$$
şeklinde ifade edilir.