Çözüm 1: Çözümde $$ \dfrac{a}{\sin \alpha} = \dfrac{b}{\sin \beta} = \dfrac{c}{\sin\gamma} = 2R $$ eşitliği ile bilinen sinüs teoremini kullanacağız:
$Alan = \dfrac{abc}{4R} = \dfrac{a\cdot 4R^2 \sin\beta \sin\gamma}{4R} = \dfrac{a^2 \sin\beta \sin\gamma}{2\sin\alpha}=\dfrac{a^2 \sin\beta \sin\gamma}{2\sin (\beta + \gamma)} = \dfrac{a^2 \sin\beta \sin\gamma}{2(\sin\beta \cos\gamma + \cos\beta \sin\gamma)} = \dfrac{a^2}{2(\cot\beta + \cot\gamma)}$
elde edilir.
Çözüm 2: Tekrar düşününce daha basit bir geometrik çözümü olduğunu farkettim.
$A$ dan $BC$'ye inen dikme ayağı $H$ olsun. $|AH|=h$ diyelim. $H$ noktasını $B$ ile $C$ arasında olarak düşünelim: $|BH|=h\cot\beta$, $|CH| = h\cot\gamma$ olup $a= |BC|=h(\cot\beta + \cot\gamma)$ olur.
$$Alan = \dfrac{ah}{2} = \dfrac{a^2h}{2a} = \dfrac{a^2h}{h(\cot\beta + \cot\gamma)} = \dfrac{a^2}{2(\cot\beta + \cot\gamma)} $$
elde edilir. $B$ noktası $H$ ile $C$'nin arasında kalırsa (yani $\beta >90^\circ$ iken) yine $a = |BC|= |HC| - |HB| = h(\cot\beta + \cot\gamma)$ bağıntısının geçerli olacağına dikkat edelim. $C$ noktası $H$ ile $B$'nin arasında kalırsa bu da benzer durumdur. İspat tamamlanmış olur.