Birim çember üzerineki $A(-1,0)$ noktasını alalım.
Her $m\in\mathbb{R}$ için, $A$ dan geçen, eğimi $m$ olan (denklemi $y=m(x+1)$ olan bu) doğru, birim çemberi ikinci bir ($P$ diyelim) noktada keser.
Bu $P$ noktasının koordinatlarını kolayca bulabiliriz:
$x^2+m^2(x+1)^2=1$ oluşundan, $x=-1,\ y=0$ ($A$ noktası) ve $x=\frac{1-m^2}{1+m^2},\ y=\frac{2m}{1+m^2}$ ($P$ noktasının koordinatları) bulunur.
(Trigonometrik fonksiyonların integrallenmesi konusunu inceleyenlere bu formüller tanıdık gelecektir)
Bu noktadan sonra (daha basit görünen) topolojik çözüm yapalım. Topoloji kullanmadan, buradaki fikirlerle, daha elementer ama daha uzun bir çözüm mümkün. Birim çemberin noktalarının kümesine $S$ diyelim, $S$ üzerinde ($\mathbb{R}^2$ den indirgenen) alt uzay topolojisi vardır.
$f:\mathbb{R}\to S\setminus\{A\},\quad f(m)=\left(\frac{1-m^2}{1+m^2},\frac{2m}{1+m^2}\right)$ (bir stereografik projeksiyon) fonksiyonu (her iki koordinat fonksiyonu da sürekli olduğundan) süreklidir.
$g:S\setminus\{A\}\to \mathbb{R},\quad g((x,y))=\frac y{x+1}$ de sürekli olup, $f$ nin tersidir (bu, geometrik olarak aşikar).
Bu da, $\mathbb{R}$ (alışılmış topoloji ile) ile $S\setminus\{A\}$ (alt uzay topolojisi ile) nin homeomorfik olduğunu gösterir.
$m\in\mathbb{Q}$ ise, $f(m)\in (S\setminus\{A\})\cap (\mathbb{Q}\times\mathbb{Q})$ olduğu apaçıktır (*:bunun tersi de doğru ama şu anda gerekli değil).
$\mathbb{Q},\ \mathbb{R}$ de yoğun olduğu için, (yoğun olmak bir topolojik özelliktir) $f(\mathbb{Q}),\ S\setminus\{A\}$ da yoğundur.
Ayrıca $A\in S\cap (\mathbb{Q}\times\mathbb{Q})$ olduğundan (aslında bu gerekli değil) $f(\mathbb{Q})\cup\{A\},\ S$ de yoğundur.
$f(\mathbb{Q})\cup\{A\}\subseteq S\cap (\mathbb{Q}\times\mathbb{Q})$ olduğundan, $S\cap (\mathbb{Q}\times\mathbb{Q}),\ S$ de yoğun olur.
(Not: aslında, * dan, $f(\mathbb{Q})\cup\{A\}=S\cap (\mathbb{Q}\times\mathbb{Q})$)