Denklemi $(1,1)$ ve $(2,5)$ ikililerinin sağladığı görülebiliyor. Farkın hangi $(m,n)$ pozitif tam sayıları için $2$ nin gücü olarak yazılıp yazılamadığını anlamak için $$9^m-7^m=(9-7)(9^{m-1}+9^{m-2}.7+...+9.7^{m-2}+7^{m-1})=2.(9^{m-1}+9^{m-2}.7+...+9.7^{m-2}+7^{m-1})$$ özdeşliğini kullandım. Eğer $m$ tek sayı ise ikinci çarpan tek sayı ve dolayısıyla fark $2$ sayısının gücü olamayacağından tek sayılarda $m=1$ dışında çözümü olmadığını gördüm. $m$ çift sayı iken ikinci çarpan da çift sayı. Bu çarpanın $2$ nin gücü olamayacağını gösterebilirsem $(1,1)$ ve $(2,5)$ ve ikililerinden başka çözüm olmayacağını söyleyebileceğim.