Önce $4$ renk kullanarak sonsuz satranç tahtasını aşağıdaki desende boyayalım.
Aynı renkle boyanmış olan karelerin ortak köşesi olmadığına dikkat edelim. Şimdi bize verilen $25$ karenin her biri bu $4$ renkten birinde bulunacağı için, güvercin yuvası prensibine göre aynı renge sahip en az $\left\lfloor \dfrac{25}{4} \right\rfloor + 1 = 7$ kare bulunur. Yani daima, ortak köşesi olmayan $n=7$ kare seçebiliriz. $25$ kareden, ortak köşesi olmayan $8$ kare seçemeyeceğimiz bir düzenleme örneği de vardır. Aşağıdaki çizimde böyle $25$ kare verilmiştir. Bu yüzden $n<8$ olup $n_{\max} = 7$ dir.
$\color{red}{\text{Not:}}$ Problem $2004$ Tübitak Lise 1. Aşama Sınavı'nda sorulmuştur. Problemle ilk uğraştığım zamanlarda, $5\times 5$ kare çizersek, komşu kare içerme bakımından en kötü konfigürasyonun oluşacağını düşünmüştüm. Bu şekilde, $9$ kare elde edebiliyoruz. Problemin seçenekleri $7, 8, 9, 10, 11$ olup $9$ yanıtı da seçeneklerde vardır. Yani tam bir ispat yapılamadığında, çeldiriciliği yüksek bir sorudur.