$\color{red}{\text{Çözüm 2:}}$ Bir $x$ tam sayısının modülo $1000$ de çarpma işlemine göre mertebesi $4$ ise, $x^n \equiv 1 \pmod{1000}$ denkliğini sağlayan en küçük pozitif tam sayı $4$ olmalıdır. Yani, $x^4 \equiv 1 \pmod{1000}$ fakat $x^2 \not\equiv 1 \pmod{1000}$ olan $x$ tam sayılarını araştırıyoruz. $1000=8\cdot 125$ olduğundan $x^4 \equiv 1 \pmod{8}$ ve $x^4 \equiv 1 \pmod{125}$ olmalıdır.
$\color{red} {\textbf{(a)}} $ $x^4 \equiv 1 \pmod{8}$ denkliğini sağlayan değerler tek sayılar olup $1,3,5,7$ çözümleri elde edilir. Hemen şuna da dikkat edelim: bu sayılar aslında $x^2 \equiv 1 \pmod{8}$ denkliğinin de çözümleridir. Yani modülo $8$ içindeki mertebeleri $1$ veya $2$ olmaktadır. Bunu aklımızda tutarak devam edelim.
$\color{red} {\textbf{(b)}}$ $x^4 \equiv 1 \pmod{125}$ denkliğini çözeceğiz. (a) dan dolayı, hiçbir şekilde $x^2 \equiv 1 \pmod{125}$ denkliğini sağlayan çözümleri kabul edemeyeceğimizi biliyoruz. Aksi halde, modülo $1000$ içindeki mertebe en $1$ veya $2$ olurdu. $(x-1)(x+1)(x^2 + 1) \equiv 0 \pmod{125}$ yazalım. Bu çarpanlardan herhangi ikisi $5$ e bölünerek denkliğin sağlanması mümkün olabilir mi diye kontrol edelim.
$\color{red} \bullet $ $5\mid (x-1)$ ve $5\mid(x+1)$ mümkün değildir. Çünkü $x$, modülo $5$ de farklı kalanlar belirtir.
$\color{red} \bullet $ $5\mid (x-1)$ ve $5\mid (x^2+1)$ mümkün değildir. Çünkü $x\equiv 1 \pmod{5}$ iken $ x^2 + 1 \equiv 2 \not\equiv 0 \pmod{5}$ tir.
$\color{red} \bullet $ $5\mid (x+1)$ ve $5\mid(x^2+1)$ mümkün değildir. Çünkü $x\equiv -1 \pmod{5}$ iken $ x^2 + 1 \equiv 2 \not\equiv 0 \pmod{5}$ tir.
$\color{red} \bullet $ O halde çarpanlardan yalnız biri $125$ ile tam bölünmelidir. $125\mid (x-1)$ , $125\mid (x+1)$ durumlarında elde edilen sayılar sırasıyla $x\equiv 1, -1 \pmod{125}$ olup bu sayıların çarpımsal mertebesi $1$ ve $2$ dir. Dolayısıyla bu çözümleri de istemiyoruz. Geriye sadece $125\mid (x^2+1)$ durumunu incelemek kaldı. $x^2 + 1 \equiv 0 \pmod{5^3}$ denkliğinin çözüm sayısı belirlenirken ispatı Taylor polinomu kullanılarak yapılan bir türev yöntemi vardır. $x^2 + 1 \equiv 0 \pmod{5^2}$ nin çözümleri ile ilgilidir. Genelde detaylarını hatırlamadığım için, buna benzer olan aşağıdaki yöntemi tercih ediyorum.
Önce $x^2 + 1 \equiv 0\pmod{5} $ çözülürse $x=5k \mp 2 $ formundaki çözümler elde edilir.
$\color{blue} \bullet $ $x= 5k \mp 2$ için $x^2 + 1 \equiv 0 \pmod{25}$ i çözelim. $25k^2 \mp 20k + 5 \equiv 0 \pmod{25}$ olup $5$ ile sadeleştirme yapılırsa $k\equiv \mp 1 \pmod{5}$ çözümleri bulunur. Yani $k=5t \mp 1$ olup $x = 25t + 7$ veya $x=25t - 7$ formundadır.
$\color{blue} \bullet $ Şimdi de $x = 25t \mp 7$ sayılarını $x^2 + 1 \equiv 0 \pmod{125}$ denkliğinde yazalım. $625t^2 \mp 350t + 49 + 1 \equiv 0 \pmod{125}$ olup denkliği $25$ ile sadeleştirirsek $t\equiv \mp 2 \pmod{5}$ bulunur. $t=5n \mp 2 $ değerlerini kullanarak $x=125n \mp 57$ değerlerine ulaşırız. $x$ in tek sayı olması gerektiğini de hatırlarsak $n$ çift sayı değerleri alabilir.
$x=125n + 57$ de, $n=0,2,4,6$ değerlerini alır. $x=125n-57$ de $n=2,4,6,8$ değerlerini alır. $n=2,4,6$ için $(125n + 57) + (125n -57)$ sayılarının toplamı $3000$ dir. Ayrıca $n=0$ için $57$, $n=8$ için $1000-57$ çözümlerinin toplamı da $1000$ olup genel toplam $3000 + 1000 = \boxed{4000}$ dir. (Bu değerlerin toplamını daha hızlı hesaplamak için bkz. Sercan Yılmaz'ın çözümü.)
Bu $8$ değerin tamamını görmek istersek $n$ değerlerini kullanarak $x\in \{ 57,257,557,807,193,443,693,943 \}$ buluruz.