İkinci soruya cevap:
Uzayda çemberi belirtmek için merkezi, yarıçapı ve içinde bulunduğu düzlemi bilmek yeterli (veya verilenlerden bunlar bulunabilir).
Bunlar biliniyor varsayarak:
Düzlemin denkleminden, $y$ yi diğer $x$ ve $z$ cinsinden yazalım. Kürenin denkleminde bunu yerine yazarsak $z$ ve $x$ içeren (ikinci derece) bir denklem bulunur. Bu denklemden $z$ yi en büyük (veya en küçük) yapan değeri bulmak (denklemin yapısından dolayı) zor değildir. Geometrik olarak da bulunabilir: Çemberin merkezinden, o düzlemde, $z$ ekseni ile en küçük ve en büyük açı yapan yönlerde, yarıçap kadar giderek en yüksek ve en alçak noktalar bulunur.