$$\begin{array}{rcl} I & = & \int_{0}^{\infty}\frac{x}{1+e^x}dx \\ \\ & = & \int_{0}^{\infty}\frac{x(e^x-1)}{e^{2x}-1}dx \\ \\ & = & \int_{0}^{\infty}\frac{x(e^{-x}-e^{-2x})}{1-e^{-2x}}dx \\ \\ & = & \int_{0}^{\infty}x(e^{-x}-e^{-2x})\underset{\sum_{n=0}^{\infty}e^{-2nx}}{\underbrace{\frac{1}{1-e^{-2x}}}}dx \\ \\ & = & \int_{0}^{\infty}x(e^{-x}-e^{-2x})\sum_{n=0}^{\infty}e^{-2nx}dx \\ \\ & = & \sum_{n=0}^{\infty}\underset{\frac{1}{(2n+1)^2}}{\underbrace{\int_{0}^{\infty}xe^{-(2n+1)x}dx}}-\sum_{n=0}^{\infty}\underset{\frac{1}{(2n+2)^2}}{\underbrace{\int_{0}^{\infty}xe^{-(2n+2)x}dx}} \\ \\ & = & \sum_{n=0}^{\infty}\frac{1}{(2n+1)^2}-\sum_{n=0}^{\infty}\frac{1}{(2n+2)^2} \\ \\ & = & \frac12\sum_{n=0}^{\infty}\frac{1}{(n+1)^2} \\ \\ & = & \frac12\cdot\frac{\pi^2}{6} \\ \\ & = & \frac{\pi^2}{12}\end{array}$$