Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
Toggle navigation
E-posta veye kullanıcı adı
Şifre
Hatırla
Giriş
Kayıt
|
Şifremi unuttum ne yapabilirim ?
Anasayfa
Sorular
Cevaplanmamış
Kategoriler
Bir Soru Sor
Hakkımızda
$E:=[(E,\oplus),\odot,(\mathbb{F},+,\cdot),\|\cdot\|]$ normlu vektör uzay ve $A\subseteq E$ olsun. $A$ konveks alt vektör uzayı ise $A^\circ$ kümesinin de konveks olduğunu gösteriniz
0
beğenilme
0
beğenilmeme
180
kez görüntülendi
$E:=[(E,\oplus),\odot,(\mathbb{F},+,\cdot),\|\cdot\|]$ normlu vektör uzay ve $A\subseteq E$ olsun. $A$ konveks alt vektör uzayı ise $A^\circ$ kümesinin de konveks olduğunu gösteriniz. $(\mathbb{F}\in\{\mathbb{R},\mathbb{C}\})$
normlu-lineer-uzay
normlu-vektör-uzayı
iç
konveks-küme
24 Mayıs 2023
Lisans Matematik
kategorisinde
murad.ozkoc
(
11.5k
puan)
tarafından
soruldu
|
180
kez görüntülendi
cevap
yorum
Lütfen yorum eklemek için
giriş yapınız
veya
kayıt olunuz
.
Bu soruya cevap vermek için lütfen
giriş yapınız
veya
kayıt olunuz
.
0
Cevaplar
İlgili sorular
$E:=[(E,\oplus),\odot,(\mathbb{F},+,\cdot),\|\cdot\|]$ normlu vektör uzay ve $A\subseteq E$ olsun. $A$ konveks alt vektör uzayı ise $\overline{A}$ kümesinin de konveks olduğunu gösteriniz.
$(X,||\cdot||)$ normlu lineer uzay üzere her $a\in X$ ve her $\epsilon>0$ için $$\left({\overset{\sim}{B}(a,\epsilon)}\right)^{\circ}=B(a,\epsilon)$$ olduğunu gösteriniz.
$(X,||\cdot||)$ normlu lineer uzay üzere her $a\in X$ ve her $\epsilon>0$ için $$\overline{B(a,\epsilon)}=\overset{\sim}{B}(a,\epsilon)$$ olduğunu gösteriniz.
$(X,\tau)$ topolojik uzay ve $A,B\subseteq X$ olsun. $$(A=int(cl(A)))(B=int(cl(\setminus A)))\Rightarrow \overline{A\cup B}^{\circ}=X$$ olduğunu gösteriniz.
Tüm kategoriler
Akademik Matematik
742
Akademik Fizik
52
Teorik Bilgisayar Bilimi
31
Lisans Matematik
5.5k
Lisans Teorik Fizik
112
Veri Bilimi
144
Orta Öğretim Matematik
12.7k
Serbest
1k
20,281
soru
21,819
cevap
73,492
yorum
2,504,418
kullanıcı