$n$ e kadar olan asal sayilarin ilk basamagina baktim ve kac kere gordugumu not ettim. Asagida sonuclari gorebilirsiniz.
Acaba bu dagilimi $n$ sonsuza giderken analitik bir sekilde tarif etmemiz mumkun mu? (Ne bileyim uniform mu dagilmis mesela?)
10^1
2 ==> 1
3 ==> 1
5 ==> 1
7 ==> 1
10^2
1 ==> 4
2 ==> 3
3 ==> 3
4 ==> 3
5 ==> 3
6 ==> 2
7 ==> 4
8 ==> 2
9 ==> 1
10^3
1 ==> 25
2 ==> 19
3 ==> 19
4 ==> 20
5 ==> 17
6 ==> 18
7 ==> 18
8 ==> 17
9 ==> 15
10^4
1 ==> 160
2 ==> 146
3 ==> 139
4 ==> 139
5 ==> 131
6 ==> 135
7 ==> 125
8 ==> 127
9 ==> 127
10^5
1 ==> 1193
2 ==> 1129
3 ==> 1097
4 ==> 1069
5 ==> 1055
6 ==> 1013
7 ==> 1027
8 ==> 1003
9 ==> 1006
10^6
1 ==> 9585
2 ==> 9142
3 ==> 8960
4 ==> 8747
5 ==> 8615
6 ==> 8458
7 ==> 8435
8 ==> 8326
9 ==> 8230
10^7
1 ==> 80020
2 ==> 77025
3 ==> 75290
4 ==> 74114
5 ==> 72951
6 ==> 72257
7 ==> 71564
8 ==> 71038
9 ==> 70320
10^8
1 ==> 686048
2 ==> 664277
3 ==> 651085
4 ==> 641594
5 ==> 633932
6 ==> 628206
7 ==> 622882
8 ==> 618610
9 ==> 614821
10^9
1 ==> 6003530
2 ==> 5837665
3 ==> 5735086
4 ==> 5661135
5 ==> 5602768
6 ==> 5556434
7 ==> 5516130
8 ==> 5481646
9 ==> 5453140