Yanıt için şunu da söyleyebiliriz: $a>0$ olduğunu varsayalım. Benzer düşünceyi $a<0$ için de yapabiliriz.
$$\lim\limits_{x\to -\infty} (ax^3+bx^2+cx+d)=-\infty,$$$$\lim\limits_{x\to \infty} (ax^3+bx^2+cx+d)=\infty$$ ve $$f(x)=ax^3+bx^2+cx+d$$ kuralı ile verilen $$f:\mathbb{R}\to\mathbb{R}$$ fonksiyonu sürekli olduğundan bu fonksiyonun grafiği $-\infty$'den $\infty$'a giderken mutlaka $x$-eksenini kesecektir. $f$ fonksiyonunun bu sıfırı söz konusu kübik denklemin kökü olacaktır.