$(2^\mathbb{R},\subseteq)$ posetinde $\mathcal {A}=\left\{\left(\dfrac{-1}{n},\dfrac{1}{n}\right):n\in\mathbb{N}\right\} $ olsun. $\mathcal {A}$ kümesinin alt sınırlarını bulunuz.
$\mathcal {A}^a=\{X\in2^\mathbb{R}: \forall A(A\in \mathcal{A}\Rightarrow X\subseteq A) \}$
$=\left\{X\in 2^\mathbb{R}:\underset{(*)}{\underbrace{\forall A\left(A\in \left\{\left(\dfrac{-1}{n},\dfrac{1}{n}\right):n\in\mathbb{N}\right\} \Rightarrow X\subseteq A\right)}}\right\}$
$\left\{\left(\dfrac{-1}{n},\dfrac{1}{n}\right):n\in\mathbb{N}\right\}=\left\{\left(-1,1\right),\left(\dfrac{-1}{2},\dfrac{1}{2}\right),\left(\dfrac{-1}{3},\dfrac{1}{3}\right),...\right\} $