Akademisyenler öncülüğünde matematik/fizik/bilgisayar bilimleri soru cevap platformu
0 beğenilme 0 beğenilmeme
129 kez görüntülendi
$\sqrt{\dfrac{3^8+5^8+34^4}2} $ sayısını hesaplayınız (Çok ünlü bir üniversitenin giriş sınavında sorulduğu belirtilmiş)
Orta Öğretim Matematik kategorisinde (6.2k puan) tarafından  | 129 kez görüntülendi

2 Cevaplar

2 beğenilme 0 beğenilmeme
$3^8+5^8+34^4=9^4+25^4+34^4=9^4+25^4+(9+25)^4$ olur.

Bundan sonra, daha genel bir eşitlik elde edeceğiz. $a,b\in\mathbb{R}$ olsun.

$\frac12\left(a^4+b^4+(a+b)^4\right)=\frac12(a^4+b^4+a^4+4a^3b+6a^2b^2+4ab^3+b^4)$

 $=(a^2)^2+(b^2)^2+(ab)^2+2(a^2b^2+a^3b+ab^3)=(a^2+b^2+ab)^2$

Bu eşitlikten $(\forall a,b\in\mathbb{R}$ için $a^2+b^2+ab\geq0$ olduğundan$)$,

$\sqrt{\dfrac{a^4+b^4+(a+b)^4}2}=a^2+b^2+ab$

$ \sqrt{\dfrac{3^8+5^8+34^4}2}=9^2+25^2+9\cdot25=931$
(6.2k puan) tarafından 
$\forall a,b\in\mathbb{R}$ için $a^2+b^2+ab\geq0$ olduğu şöyle görülebilir:
$ab\geq0$ ise
$a^2+b^2+ab\geq0$ apaçıktır.
$ab<0$ ise ($-ab>0$ olur)
$(a+b)^2\geq0\Rightarrow a^2+b^2+ab\geq-ab\Rightarrow a^2+b^2+ab>0$ olur.
Sorunun kaynağı nedir hocam?
Youtube da biri (hatırladığım kadarı ile,) "Cambridge Üniversitesi Matematik Bölümü giriş sınavı sorusu" diyerek çözmüş (bu benim çözümüm, oradaki çözümü görmedim, buna benzerdir sanırım). Tekrar arayınca bulamadım. Bulabilirsem linkini yazarım.
2 beğenilme 0 beğenilmeme
\begin{align*} 3^8+5^8+34^4&=9^4+25^4+(9+25)^4\\ &=9^4+(16+9)^4+(9+16+9)^4\\ &=9^4+(2\cdot 9+7)^4+(3\cdot 9+7)^4\\ &=9^4\cdot (1+(2+a)^4+(1+2+a)^4)\ ,\ a=7/9\\ &=9^4\cdot (1+a^4+(1+a)^4)\, , \,b=2+a=25/9\\ &=9^4\cdot \left(1+b^4+b^4+4b^3+6b^2+4b+1\right)\\ &=9^4\cdot \left(2+2b^4+4b^3+6b^2+4b\right)\\ \dfrac{3^8+5^8+34^4}{2}&=9^4\cdot \left(1+b^4+2b^3+3b^2+2b\right)\\ &\ldots \end{align*}

$1+b^4+2b^3+3b^2+2b=b^4+b^2+1+2(b^3+b^2+b)=(b^2+b+1)^2$  $$\sqrt{\dfrac{3^8+5^8+34^4}{2}}=81(625/81+25/9+81/81)=625+225+81=931$$
(3.1k puan) tarafından 
20,281 soru
21,819 cevap
73,492 yorum
2,504,398 kullanıcı