Daha önce buradaki soruda $\sum_{n=0}^\infty\:\frac{\sin\big((2n+1)x\big)}{2n+1}$ fonksiyonunun $[0,\pi]$ aralığındaki $x$ ekseni ile arasında kalan alanı hesaplamıştım.
Bu fonksiyonunun bir kaç özelliği var :
-
$2\pi$ periyotlu kare dalga .
-
$[0,\pi]$ aralığında $x$ ekseni ile arasında kalan alan $\frac{\pi^2}{4}$ olduğundan , (ilgili soruda çözüm mevcut) dalganın genliği $\frac{\pi}{4}$ .
- Burada fonksiyonun yaklaşık bir grafiği var.
Soruda bizden istenen $\sum_{n=0}^\infty\:\frac{\sin(2n+1)}{2n+1}$ serisinin değeri.Yukarıda verdiğim bilgilerden yararlanarak bu serinin değerinin $\frac{\pi}{4}$ olduğunu söyleyebiliriz ($x$ yerine $1$ koyarak).
$$\boxed{\sum_{n=0}^\infty\:\frac{\sin\big((2n+1)x\big)}{2n+1}=\frac{\pi}{4}}$$
Kısaca yaptığımız iş : Seriyi çözmek için $f(x)=\sum_{n=0}^\infty\:\frac{\sin\big((2n+1)x\big)}{2n+1}$ şeklinde bir fonksiyon yazmak ve $x$ yerine $1$ vermek.Fonksiyon yukarıda yazdığım gibi kare bir dalga.Kare dalga olduğundan alabileceği iki değer var.Bu değerlerde genliktir.Fonksiyonun aldığı değerler $\frac{\pi}{4}$ ve $-\frac{\pi}{4}$.
Hatta çözümü daha da genişletilmiş bir halde yazalım :
$$\boxed{\sum_{n=0}^\infty\:\frac{\sin\big((2n+1)x\big)}{2n+1}=\begin{cases}\frac{\pi}{4}&0<x<\pi\\-\frac{\pi}{4}&\pi<x<2\pi\end{cases}}$$