Doğan Hocam'ın bağlantısını verdiği sayfadaki ilk ispatı biraz parçalayarak ve biraz da açarak yazmaya çalışacağım.
---
Diyelim $D$ sonlu bir bölüm halkası ve $Z$ de onun merkezi olsun. Bu durumda $Z$ bir cisim ve $D$, $Z$ üzerinde bir vektör uzayı olur. $Z$'nin $q$ adet elemanı olduğunu varsayalım. Bu durumda $D$'nin $q^n$ tane elemanı olur, buradaki $n$ sayısı, $D$'nin $Z$ üzerindeki boyutu.
$0$ hariç, $D$'nin içindeki tüm elemanlar tersinir, o halde $|D^{\times}|=q^n-1$. $D$'den aldığımız bir $a$ elemanının merkezleyicisini (centralizer) $C(a)$ ile gösterelim. Açık ki $C(a)$ da, $Z$ üzerinde bir vektör uzayı ve bu yüzden $q^d$ tane elemanı var, buradaki $d$ sayısı, $n$'den küçük bir pozitif tamsayı tabii ki. Ek olarak $|C(a)^{\times}|=q^d-1$. Diğer taraftan $C(a)^{\times}$ grubu, $D^{\times}$ grubunun bir alt grubu. Lagrange Teoremi gereği $q^d-1|q^n-1$ olmalı. Kolayca gösterilebilir ki aslında $d|n$.
$D^{\times}$ grubunun merkezi $Z^{\times}$ olduğundan, sınıf denklemi bize $$|D^{\times}|=|Z^{\times}|+\sum_{a\notin Z}\frac{|D^{\times}|}{|C(a)|},$$ diğer bir deyişle $$q^n-1=q-1+\sum_{d|n\ \&\ d<n}\frac{q^n-1}{q^d-1}$$ olduğunu söyler. Biliyoruz ki, $\Phi_n(q)$ polinomu eşitliğinin sağ tarafındaki toplam sembolünün içindeki her şeyi ve $q^n-1$ ifadesini böler. Bu durumda $q-1$ ifadesini de bölmeli.
Şimdi velev ki $n>1$ olsun. $\alpha$, birin herhangi bir n-inci ilkel kökü olmak üzere, $$\|q-\alpha\|>\|q-1\|$$ ifadesinin sağlandığı kolayca görülebilir. Ama bu durumda, $$\Phi_n(q)=\prod (q-\alpha)>q-1$$ ifadesi elde edilir ki bu da $\Phi_n(q)$'nun $q-1$'i bölmesiyle çelişir.
Demek ki $n=1$ olmalı. Yani $D=Z$, yani $D$'nin içindeki tüm elemanlar değişmeli, yani $D$ bir cisim.
---
Bu güzel soru ve bağlantı için teşekkürler. O geometrik sonucu heyecanla bekliyorum.