Daha şişirilmemiş balonumuzu, lastiğinin aşağıda verilen eksensel kesitiyle (='Lagrange yay uzunluğu' denilen $s$ değişkeniyle parametrize edilen, $L$ uzunluğunda bir eğri) tanımlıyoruz. Balon, bu eğriyi silindirik açı değişkeni $\phi$ yardımıyla $r=0$ etrafında $2\pi rad$ kadar döndürünce oluşuyor.
$0\leq s\leq L$ için $z_0=z_0(s)$, $r_0=r_0(s)$ türevlenebilir göndermeler ve $r_0(0)=r_0(L)=0$.
Soruya geçmeden önce epeyce varsayımda bulunacağız.
Varsayım 1: Balonumuz deliksizdir (yukarıda anlatılandan bir basit bağlantılı bölge çıkar) ve asla patlamaz.
Varsayım 2: Deliksiz olduğu için ancak fiziküstü bir biçimde -ama sanki ağızla üfleniyormuş gibi- şişmektedir. (Daha gerçekçi bir yaklaşım için doi:10.1177/108128650200700506.)
Varsayım 3: Lastiğin kalınlığı balonun hacminin artmasına rağmen azalmaz, her zaman için $d=d_0=d_0(s)$'dir.
$0\leq s\leq L$ için $z=z(s)$, $r=r(s)$ türevlenebilir göndermeler ve $r(0)=r(L)=0$ şişmiş balonun koordinatları olsun.
Tanım: Şekil değiştirme enerjisi yoğunluğu $W$, bir cismin birim hacimde şeklinin değişmesinden dolayı sahip olduğu enerjidir.
Varsayım 4: Balon lastiği sıkıştırılamaz bir Mooney-Rovlin tipi maddeden yapılmıştır.
Buna göre de şekil değiştirme enerjisi yoğunluğu fonksiyonu şöyledir:
$W:=C_1(\lambda_1^2+\lambda_2^2+\lambda_3^2-3)+C_2(\lambda_1^2\lambda_2^2+\lambda_1^2+\lambda_3^2+\lambda_2^2+\lambda_3^2+-3)$
($C_1$ ve $C_2$ gerçekte, modellenecek her madde için ayrıca ölçülmesi gereken sabitlerdir.) Buradaki uzama oranları $\lambda_1,\lambda_2,\lambda_3$ için şu bağıntılar geçerlidir ($(\cdot)'\equiv \frac{d\cdot}{ds}$):
$\lambda_3=\frac{1}{\lambda_2\lambda_3}$ ve de dönme yüzeyi özelliğinden ötürü $\lambda^2_1=(r')^2+(z')^2\ \wedge \ \lambda_2^2=\left(\frac{r}{r_0}\right)^2$.
Varsayım 5: $\frac{\partial W}{\partial z}=0$ ve $\frac{1}{r}\frac{\partial W}{\partial r}=\frac{1}{z'}\frac{\partial W}{\partial z'}$ olsun.
Varsayım 6: İçerisindeki hava basıncı lastiğin her kesimine düzgün bir biçimde uygulanmaktadır.
Varsayım 7: Normal bir balonla karşılaştırılabilir olması için şu özelliklere sahiptir:
$C_1=3bar, C_2=-0,3bar,$ cm biriminden olmak üzere ${d_0(s)}=1,5\cdot 10^{-2}r_0(s)$; $ r_0(s)=3cn([s-K(\frac{1}{\sqrt{2}})],\frac{1}{\sqrt{2}})$, $z_0=3\sqrt{2}E(\left[ sn([s-K(\frac{1}{\sqrt{2}})],\frac{1}{\sqrt{2}})\right],\frac{1}{\sqrt{2}})$, $L:=2K(\frac{1}{\sqrt{2}})$. $sn(x),cn(x)$: Jacobi elliptik fonksiyonları ve $K(x),E(x)$: birinci ve ikinci türden tam elliptik integral fonksiyonları.
Soru: Herhangi bir $p$ için , örn. $p=1bar$, balonun şekli nedir?
İpucu: Gaz basıncı yüzünden sahip olunan ilgili enerji $P:=-\int_{V_{{gaz},şişmiş}} p dV$, toplam şekil değiştirme enerjisi de $E:=\int_{V_{lastik,şişmiş}} WdV=\int_0^{2\pi}\int_0^L W(z,z',r,r')d_0r_0d\phi ds$ olarak adlandırılsın. Sürekli ortam fiziğinin sanal iş prensibine göre, bir cisim için; yalnız ve yalnız herhangi sanal yerinden oynatılma ve/veya şekil değiştirme işlemleri gerçekleştirildiğinde, iç ve dış toplam sanal iş miktarı birbirine eşitse; sistem (kuvvet ve gerilmeler bakımından) dengededir. Yani burada denge halinde $\delta E=\delta P$ geçerlidir.
Ek soru 1: Balon sanki araba lastiği pompası kullanılıyor gibi şişmeye başlarsa (yani $p\Rightarrow\infty$ için) hangi şekli alır? Bu sorunun cevabı için neden aynı türevsel denge denklemini kullanabiliriz, demek istediğim buna göre balonun sabit bir $p$ için dengelendiğini varsaymış olmuyor muyuz?
Ek soru 2: Üçüncü varsayımdan vazgeçersek sorunun cevabı ne olur?