$x_1, x_2, x_3$ , $a_{ik} (i,k=1,2,3)$ hepsi pozitif olmak üzere,
$a_{ik} \leq M$ ve
$x_{1}^{2}+x_{2}^{2}+x_{3}^{2} \leq 1$ ise
$a_{11}x_{1}^{2}+a_{12}x_{1}x_{2}+\dots+a_{33}x_{3}^{2} \leq 3M$ olduğunu gösterin.
$(x_1+x_2+x_3)^2\leq3(x_1^2+x_2^2+x_3^2)\leq3$ ve tum katsayilar $M$'den kucuk.ilk esitsizlik: Cauchy-Schwarz